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IBR is Expected to Replace Some of Services provided by SG

m Reducing the number of synchronous generators (SGs) decline grid frequency stability
m Frequency control including inertial response is required for inverter based-resources (IBRs)

m Their performance in hardware has not been discussed well
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Tested Five Inverter Prototypes with Advanced Control Functions

Grid-following inverter Grid-forming inverter
GFL 1 GFL 2 GFM O GFM 1 GFM 2
df/dt-P droop  df/dt-P droop VSM P-f droop VSM
Advanced control f-P droop f-P droop Q-Vdroop Q-Vdroop Q-Vdroop
Rated capacity (kVA) 20 49.9 12 50
Rated AC voltage (V) 200 200 420 440
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PHIL Test Setup for GFL and GFM Inverters

Modified IEEE 9-bus system model
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As IBR Ratio Increases, Frequency Change Increase for Conv. IBR,
Decrease for GFL and GFM Inverters. GFM Inverters are Stable at 80%.
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Inertia Constant “H” Affects RoCoF;

@ AIST (SFREA

Governor Gain "G” Affects Frequency Nadir (and RoCoF)
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Islanding Detection and Frequency Stabilization Capability in GFM inverter
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m Conduced PHIL testing to verify the performance of GFL and GFM inverter prototypes
o Frequency swing was mitigated by introducing GFL and GFM inverters
o GFL inverters were stable by IBR ratio at 60%, GFM inverters were stable at 80%
s Confirmed control parameter sensitivity
o Inertia constant affected RoCoF
o Governor gain affected Frequency nadir

m Observed interference between islanding detection and frequency stabilization capability of
GMF inverter

m Future work
o Evaluate the other power system stabilities
o Develop islanding detection method for GFM inverters
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Similar Trends are Observed in Frequency Nadir and RoCoF
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GFMI is an Alternative to Provide FFR Capability in Low-Inertia Grid

m Fast frequency response (FFR) capability of synchronous generator (SG) needs to be
alternated in power system with high penetration of inverter based-resources (IBRs)

m  Grid-forming inverter (GFMI) is an option for providing FFR
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Advanced Control of GFL and GFM inverters
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Fig. 4. Generalized control block diagrams of (a) the frequency control implemented in GFL 1 and GFL 2; the voltage phase angle control
implemented in (b) GFM 0, GFM 2; and (¢) GFM 1; (d) the voltage magnitude control implemented in GFM 0, GFM 1, and GFM 2.
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Specifications of inverters

Table 2. Specifications of inverter prototypes.

@ AIST (2 FREA

Name and GFL 1 GFL 2 GFM 0 GFM 1 GFM 2

iverter types

Rated capacity 20kVA 499 kVA 12 kVA 20 kVA 50 kVA

Advanced dt/dt-P droop, df/dt-P droop, = VSM, P-f droop, VSM,

control functions  {-P droop f-P droop Q-V droop Q-V droop Q-V droop

IDM (reactive Voltage phase angle RoCoF Unimplemented  Voltage phase angle Voltage phase angle

method; active Jjump detection; change Jump detection; Jump detection;

method) Frequency feedback detection; Frequency feedback Frequency feedback
method with step Frequency method with step method with step
reactive power shift method reactive power reactive power
1njection mjection injection

Current limiting w/ w/ w/ w/0 w/

function

Prototype Prototype 1 Prototype 2 Prototype 3 Prototype 1 Prototype 4

number
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Detailed Connection Configuration of Each Inverter Under Testing
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