

08.05.2023 – 10.05.2023 Dortmund, Germany

EES-UETP Workshop on Advanced Laboratory System Testing Methods for Modern Power Systems

Hardware-in-the-Loop (HIL) Testing of Grid-Following and Forming Inverters

Hiroshi Kikusato

National Institute of Advanced Industrial Science and Technology (AIST)

May 9, 2023

Table of Contents

- Introduction of AIST and FREA
- Why hardware-in-the-loop (HIL) testing for power systems?
- HIL testing for grid-following (GFL) and grid-forming (GFM) inverters with virtual inertia
 - CHIL testing to develop df/dt function
 - PHIL testing to evaluate performance of inverters from different manufacturers
- Summary

AIST (National Institute of Advanced Industrial Science and Technology)

- Established in 2001 by reorganizing 16 institutes under METI
- Total income: 110 billion JPY
 90%: Government, 10%: Industry
- 2901 employees (as of July. 2022)
 - 2214 researchers
 - 687 administrative employees
 - + executives, visiting researchers, postdocs, technical staff
- 7 research departments

FREA (Fukushima Renewable Energy Institute, AIST)

- Established in Koriyama, Fukushima in 2014 for promoting
 - R&D of renewable energy internationally
 - Reconstruction of disaster area of 3.11

Hydrogen plant

Smart System Research Facility (FREA-G)

Power System Lab

Has over 200 researchers in 9 research teams

Energy Network

Source: FREA https://www.aist.go.jp/fukushima/

Hydrogen Photovoltaic

Wind Power Geothermal Shallow Geothermal

300 kW WT

500 kW PV

Power System Laboratory (Movie)

- AC source
 - **Grid simulator: 500 kVA, 30 kVA**
- DC source
 - PV simulator: 600 kW
 - Batter simulator: 207 kW
 - Lithium-ion battery: 16 kWh
- Inverter
 - □ GFM (VSG control)
 - **GFL** (smart inverter, virtual inertia, etc.)
- Digital real-time simulator (DRTS)
 - RTDS Technologies: NovaCor, PB5
 - Typhoon HIL: HIL604
- RLC load: 200 kVA
- Data acquisition system
- Connectivity to demonstration field

Smart System Research Facility called "FREA-G"

- Established in 2016 for testing large-size grid-connected inverters
- Testing capability
 - Grid simulator: AC 5 MVA (1.67 MVA × 3 units)
 - PV/battery simulator: DC 3.3 MVA, 2000 V
 - Grid interconnection testing room (L, M, S)
 - Environmental testing room: -40 to +85°C, 30 to 90%RH
 - EMC testing room: 34 m×34 m×7.8 m, largest in Japan

Our Team's Role

System operator & Manufacturer Test lab & Certification body

Support R&D to accelerate distributed energy resource (DER) integration

- 1. Power system level
- Power system analysis
- HIL testing
- 2. DER level
- Functional development
- Conformance testing
- Standardization

230509 TUD ©Kikusato, Hiroshi 2023

Why HIL Testing for Power Systems?

Increase in IBRs and Change in Required Roles

Evolution of grid support functions

IEEE

IEEE STANDARDS ASSOCIATION

Significant Increase in Inverter Test Items

1547 Content Growth									
		1 st Edition		2 nd Edition					
	1547 technical content:	13 pages	\rightarrow	127 pages					
	1547 1 technical content:	54 nages	\rightarrow	256 nages					
		of pages		200 pages					
New/significantly modified 1547-									
2018 content in red:	 7. Power quality 7.1 Limitation of dc injection 7.2 Limitation of voltage fluctuations induced by the DER 								
4. General interconnection technical specifications and requirements	7.3 Limitation of current distortion								
4.2 Reference points of applicability	7.4 Limitation of overvoltage contribution								
4.3 Applicable voltages	8. Islanding								
4.4 Measurement accuracy	8.1 Unintentional islanding								
4.5 Cease to energize performance requirement	8.2 Intentional islanding								
4.6 Control capability requirements	9. DER on distribution secondary grid/area/street (grid) networks and	spot networks							
4.7 Prioritization of DER responses	9.1 Network protectors and automatic transfer scheme requireme	ents							
4.8 Isolation device	9.1 Distribution secondary grid networks								
4.9 Inadvertent energization of the Area EPS	9.2 Distribution secondary spot networks								
4.10 Enter service	10. Interoperability, information exchange, information models, and p	rotocols							
4.11 Interconnect integrity	10.1 Interoperability requirements								
4.12 Integration with Area EPS grounding	10.2 Monitoring, control, and information exchange requirements								
4.13 Exemptions for Emergency Systems and Standby DER	10.3 Nameplate information								
5. Reactive power capability and voltage/power control requirements	10.4 Conliguration Information								
5.2 Reactive power capability of the DER	10.5 Monagement information								
5.5 Voltage and reactive power control	10.7 Communication protocol requirements								
6 Personase to Area EPS abnormal conditions	10.8 Communication performance requirements								
6.2 Area EPS faults and open phase conditions	10.9 Cyber security requirements								
6.3 Area EPS reclosing coordination	11. Test and verification requirements								
6.4 Voltage	11.2 Definition of test and verification methods								
6.5 Frequency	11.3 Full and partial conformance testing and verification			NDE					
6.6 Return to service after trip	11.4 Fault current characterization			NKEL					

NREL | 5

Source: A. Hoke, "DER Testing and Verification - Overview of IEEE P1547.1," PJM Technical Workshop on DER Integration, 2019

EES-UETP Electric Energy Syste

artnership

Need to Carefully Evaluate Interaction between Grid and Inverters

- Implementation of grid-forming (GFM) capability is just around the corner
 - NC RfG 2.0 with GFM requirement will be issued in 2024 and reflected in the National Grid Code in 3 years
 - Inverter performance will further impact the reliable power system operation

Source: "ENTSO-E amendment proposal for NC RfG: on Grid Forming Capability," ENTSO Public Workshop, 2022

HIL Simulation is a Flexible and Reliable Testing Method

CHIL vs. PHIL

- Both are powerful verification methods, but if we had to choose...
- CHIL is simpler to implementation
 - PHIL has interface issues
 - Suitable for development by manufactures
- PHIL is more realistic
 - CHIL does not include a real power unit
 - Suitable for evaluation by utility

230509 TUD ©Kikusato, Hiroshi 2023

HIL Testing for GFL and GFM Inverters with Virtual Inertia

IBR is Expected to Replace Some of Services Provided by SG

- Reducing the number of synchronous generators (SGs) decline grid frequency stability
- Frequency control including **inertial response** is required for inverter based-resources (IBRs)
- Their performance in hardware has not been discussed well

230509 TUD ©Kikusato, Hiroshi 2023

CHIL Testing to Develop df/dt Function

Development of df/dt Function

- A virtual inertia control of grid-following (GFL) inverter
 - Many control parameters
 - Coexist with other grid-supporting functions (frequency-watt, reactive power control, etc.)

CHIL Test Accuracy Verification

CHIL setup

Laboratory setup

EES-UETP Electric Energy Syst

Active/Reactive Power Response Matched within ±1.0%

Partnership

CHIL Setup for Parameter Sensitivity Analysis

- Synchronous generator (SG): 300 kVA, 150 kW output
- Inverter-based resource (IBR): 300 kVA, 150 kW output
- Load: 300 kW => 320 kW

EES-UETP Electric Energy S

AIST PREA

Source: J. Hashimoto, et al., "Development of df/dt Function in Inverters for Synthetic Inertia," Energy Reports 2023, 9 (supplement 1), 363–371; J. Hashimoto, et al., "Developing a Synthetic Inertia Function for Smart Inverters and Studying its interaction with other functions with CHIL testing," Energy Reports 2023, 9 (supplement 1), 435–443.

Pros and Cons of CHIL Testing

- Easy to implement, debug, and perform sensitivity analysis
 - Significant advantages for manufacturers
- Cannot evaluate performance including power unit
 - System operators may require the performance evaluation of the entire inverter
 - Simulation model submission
 - PHIL testing

PHIL Testing for Performance Evaluation of Inverters from Different Manufacturers

Tested Five Inverter Prototypes with Virtual Inertia Control

	Grid-following inverter		Grid-forming inverter			
	GFL 1	GFL 2	GFM 0	GFM 1	GFM 2	
Control function	df/dt-P droop f-P droop	df/dt-P droop f-P droop	VSM Q-V droop	P-f droop Q-V droop	VSM Q-V droop	
Rated capacity (kVA)	20	49.9	12	20	50	
Rated AC voltage (V)	200	200	420	200	440	

Major Challenges of PHIL Testing

- **PHIL interface** is a key part that contributes to
 - Flexibility, stability, and accuracy of PHIL setup
- Node limitation for real-time simulation
 - Node reduction modeling without loss of important information

Stability Assessment of PHIL Simulation


```
S_{sw} = 10 \text{ MW}, \tau = 0 \text{ } \mu s : Stable
```


$S_{sw} = 100 \text{ MW}, \tau = 0 \text{ } \mu s$: Unstable

28

$S_{sw} = 100 \text{ MW}, \tau = 500 \ \mu s$: Stable

$S_{sw} = 100 \text{ MW}, \tau = 500 \mu s$: Stable, but Slightly Inaccurate

Building Stable and Accurate PHIL Environment of Low-Inertia Grid was Difficult

PHIL Test Setup for GFL/GFM Inverters Using Modified IEEE 9-Bus System Model

Modified IEEE 9-bus system model (300 MW)

PHIL Testing Can be Conducted Stably in Most Cases with Adequate Accuracy

Source: H. Kikusato, et al., "Verification of Power Hardware-in-the-Loop Environment for Testing Grid-Forming Inverter," Energy Reports 2023, 9 (supplement 3), 303–311.

EES-UETP Electric Energy System

As IBR Ratio Increased, Frequency Change Increased for Conv. IBR, Decreased for GFL and GFM Inverters. GFM Inverters were Stable at 80%.

EES-UETP Electric Energy Syste

Inertia Constant "H" Affects RoCoF; Governor Gain "G" Affects Frequency Nadir (and RoCoF)

Source: H. Kikusato, et al., "Performance Evaluation of Grid-Following and Grid-Forming Inverters on Frequency Stability in Low-Inertia Power Systems by Power Hardware-in-the-Loop Testing," Energy Reports 2023, 9 (supplement 1), 381–392.

35

Interference Occurs between Islanding Detection and Frequency Stabilization Capability in GFM Inverter

Source: H. Kikusato, et al., "Performance Evaluation of Grid-Following and Grid-Forming Inverters on Frequency Stability in Low-Inertia Power Systems by Power Hardware-in-the-Loop Testing," Energy Reports 2023, 9 (supplement 1), 381–392.

PHIL Testing for Multiple Inverter Combinations

How do we test multiple inverters with different ratings? Equalize rated capacities, voltages, and control parameters

EES-UETP Electric Energy Sy

aining Par

Configuration of PHIL Testing for Multiple Inverters

Kikusato, et al., "Power Hardware-in-the-Loo Controls," Energy Reports (accepted)

No inverter combination caused interference that significantly worsened the grid frequency stability. Combined inverters' performance was intermediate between the performance of each inverter alone.

Source: H. Kikusato, et al., "Power Hardware-in-the-Loop Testing for Multiple Inverters with Virtual Inertia Controls," Energy Reports (accepted).

Electric Energy

Summary

- HIL testing is a powerful evaluation method for IBR dominant power systems
 - Can observe the interaction between IBRs and power systems
 - Can model various power systems and test inverter hardware (flexibility & fidelity)
- CHIL is simpler to implement, debug, and sensitivity analysis
 - Suitable for development phase by manufactures
 - Developed df/dt function for GFL inverter
 - Verified CHIL accuracy and performed many case studies
- PHIL is more realistic
 - Suitable for evaluation by utility
 - There are interface issues
 - Built accurate and stable PHIL test setup for GFL/GFM inverters in a low-inertia condition
 - Compared the performance of inverters from different manufacturers based on many case studies

230509 TUD ©Kikusato, Hiroshi 2023

Appendix

230509 TUD ©Kikusato, Hiroshi 2023

Conventional Japanese Conformance Testing

Tests with Changes in Voltage Magnitude, Frequency, and Phase Angle

- GFL Inverters: Almost Conformance in All Tests
- GFM Inverters: Non-Conformance in Most Tests, Three Issues are Identified

#	Test	GFL 1	GFL 2	GFM 0	GFM 1	GFM 2	
1	Test for over/under-voltage trip	C *	С	N	Ν	N	
2	Test for over/under-frequency trip	C*	С	N	Ν	Ν	
3	Unintentional islanding test	C *	C*	-	N	C*	
4	Test for voltage magnitude change within continuous operation region	С	С	N	С	С	
5	Test for voltage phase angle change	С	С	С	N	Ν	
6	Test for low/high-voltage ride-through	C *	C*	N	N	Ν	
7	Test for low/high-frequency ride-through	С	С	N	N	С	

C: Conformance; N: Non-conformance; -: Not conducted * Conformance can be expected by minor changes to device configuration, control logic, etc.

Issue 1: Unwanted Tripping by OCR due to Change in Grid Voltage

Test for over-voltage trip (GFM 0)

Source: H. Kikusato, et al., "Performance Analysis of Grid-Forming Inverters in Existing Conformance Testing," Energy Reports 2022, 8 (supplement 15), 73-83.

- Reason for non-conformance
 - Trip before initial state: #1, 2
 - Operation cannot continue: #4~7
- Reason for tripping due to OCR
 - GFM's voltage-source characteristic
 - No/short-term current limiting function
 - Initial P output setting was 1.0 pu
- Solution
 - Longer current limiting function
 - Decrease initial P output setting
 - Change control parameters

230509 TUD ©Kikusato, Hiroshi 2023

FREA AIST

Issue 2: Active Power Swing after Recovery from Voltage Sag

- Reason for non-conformance
 - 2 is not satisfied
- Reason for active power swing GFM's voltage-source characteristic
- Solution
 - Change control logic/parameters
 - **Change conformance criteria**
- Cf. Conformance criteria of active power swing after voltage recovery
 - Acceptable: IEEE 1547, IEEE 2800, National Grid
 - Not noted: EN50549

Issue 3: Coexistence of Grid Stabilization Capability and Islanding Detection

 GFM 0: not implemented, GFM 1: non-conformance but frequency was stabilized, GFM 2: conformance but frequency wasn't stabilized

Source: H. Kikusato, et al., "Performance Analysis of Grid-Forming Inverters in Existing Conformance Testing," Energy Reports 2022, 8 (supplement 15), 73–83.

EES-UETP Electric Energy Sys

AIST PREA

Issue 3: Coexistence of Grid Stabilization Capability and Islanding Detection

 GFM 0: not implemented, GFM 1: non-conformance but frequency was stabilized, GFM 2: conformance but frequency wasn't stabilized

 $\mathbf{Q} = \begin{bmatrix} 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 \\ & & \text{Time (s)} \end{bmatrix}$

Frequency was unstable

PHIL test results activating IDM (Kikusato et at., 2022)

Frequency was stable Source: H. Kikusato, et al., "Performance Analysis of Grid-Forming Inverters in Existing Conformance Testing," Energy Reports 2022, 8 (supplement 15), 73–83.

Related Works

- H. Kikusato et al., "Performance Evaluation of Grid-Following and Grid-Forming Inverters on Frequency Stability in Low-Inertia Power Systems by Power Hardware-in-the-Loop Testing," Energy Reports 2023, 9 (supplement 1), 381– 392.
- H. Kikusato et al., "Performance Analysis of Grid-Forming Inverters in Existing Conformance Testing," Energy Reports 2022, 8 (supplement 15), 73–83.
- H. Kikusato et al., "Verification of Power Hardware-in-the-Loop Environment for Testing Grid-Forming Inverter," Energy Reports 2023, 9 (supplement 3), 303–311.
- H. Kikusato et al., "Power Hardware-in-the-Loop Testing for Multiple Inverters with Virtual Inertia Controls," Energy Report (accepted).
- D. Orihara et al., "Contribution of Voltage Support Function to Virtual Inertia Control Performance of Inverter-Based Resource in Frequency Stability," Energies 2021, 14, 4220.
- D. Orihara et al., "Internal Induced Voltage Modification for Current Limitation in Virtual Synchronous Machine," Energies 2022, 15, 901.
- J. Hashimoto et al., "Development of df/dt Function in Inverters for Synthetic Inertia," Energy Reports 2023, 9 (supplement 1), 363–371.
- J. Hashimoto et al., "Developing a Synthetic Inertia Function for Smart Inverters and Studying its Interaction with Other Functions with CHIL Testing," Energy Reports 2023, 9 (supplement 1), 435–443.
- T. Takamatsu et al., "Simulation Analysis of Issues with Grid Disturbance for a Photovoltaic Powered Virtual Synchronous Machine," Energies 2022, 15, 5921.
- H. Hamada et al., "Challenges for a Reduced Inertia Power System Due to the Large-Scale," Global Energy Interconnection 2022, 5(3), 266–273.